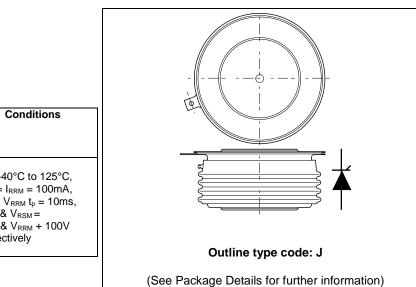


Phase Control Thyristor

DS5833-4 June 2014 (LN31648)


FEATURES

- Double Side Cooling
- High Surge Capability

KEY PARAMETERS

V _{DRM}	8500V
I _{T(AV)}	387A
I _{TSM}	5250A
dV/dt*	1500V/µs
dl/dt	200A/us

* Higher dV/dt selections available

Fig. 1 Package outline

APPLICATIONS

- High Power Drives
- High Voltage Power Supplies
- Static Switches

VOLTAGE RATINGS

Part and Ordering Number	Repetitive Peak Voltages V _{DRM} and V _{RRM} V	Conditions
DCR390J85* DCR390J80 DCR390J70	8500 8000 7000	$\begin{array}{l} T_{vj} = -40^{\circ}C \ to \ 125^{\circ}C, \\ I_{DRM} = I_{RRM} = 100 mA, \\ V_{DRM}, \ V_{RRM} \ t_p = 10 ms, \\ V_{DSM} \ \& \ V_{RSM} = \\ V_{DRM} \ \& \ V_{RRM} + 100 V \\ respectively \end{array}$

Lower voltage grades available. *8200V @ -40° C, 8500V @ 0° C

ORDERING INFORMATION

When ordering, select the required part number shown in the Voltage Ratings selection table.

For example:

DCR390J85

Note: Please use the complete part number when ordering and quote this number in any future correspondence relating to your order.

@2 Ton Insplant

CURRENT RATINGS

T_{case} = 60°C unless stated otherwise

Symbol	Parameter	Test Conditions	Max.	Units
Double Sid	de Cooled			
I _{T(AV)}	Mean on-state current	Half wave resistive load	387	А
I _{T(RMS)}	RMS value	-	608	А
Ι _Τ	Continuous (direct) on-state current	-	583	А

SURGE RATINGS

Symbol	Parameter	Test Conditions	Max.	Units
I _{TSM}	Surge (non-repetitive) on-state current	10ms half sine, $T_{case} = 125^{\circ}C$	5.25	kA
l ² t	I ² t for fusing	$V_R = 0$	0.138	MA ² s

THERMAL AND MECHANICAL RATINGS

Symbol	Parameter	Test Conditions		Min.	Max.	Units
R _{th(j-c)}	Thermal resistance – junction to case	Double side cooled	DC	-	0.0379	°C/W
		Single side cooled	Anode DC	-	0.0745	°C/W
			Cathode DC	-	0.0797	°C/W
R _{th(c-h)}	Thermal resistance – case to heatsink	Clamping force 11.5kN	Double side	-	0.0072	°C/W
		(with mounting compound)	Single side	-	.0144	°C/W
T_{vj}	Virtual junction temperature	Blocking V _{DRM} / _{VRRM}		-	125	°C
T _{stg}	Storage temperature range			-55	125	°C
F _m	Clamping force			10	13	kN

e 2 Tom Implant

DYNAMIC CHARACTERISTICS

Symbol	Parameter	Test Conditions		Min.	Max.	Units
I _{RRM} /I _{DRM}	Peak reverse and off-state current	At V _{RRM} /V _{DRM} , T _{case} = 125°C		-	100	mA
dV/dt	Max. linear rate of rise of off-state voltage	To 67% V _{DRM} , T _j = 125°C, ga	ate open	-	1500	V/µs
dl/dt	Rate of rise of on-state current	From 67% V_{DRM} to 2x $I_{\text{T(AV)}}$	Repetitive 50Hz	-	100	A/µs
		Gate source 30V, 10Ω ,	Non-repetitive	-	200	A/µs
		$t_r < 0.5 \mu s, T_j = 125^{\circ}C$				
V _{T(TO)}	Threshold voltage – Low level	50A to 400A at T _{case} = 125°C		-	1.162	V
	Threshold voltage – High level	400A to 1600A at T _{case} = 125°C		-	1.3063	V
r _T	On-state slope resistance – Low level	50A to 400A at T _{case} = 125°C		-	3.153	mΩ
	On-state slope resistance – High level	400A to 1600A at T _{case} = 125°C		-	2.763	mΩ
t _{gd}	Delay time	V_D = 67% V_{DRM} , gate source 30V, 10 Ω t _r = 0.5µs, T _j = 25°C		-	3	μs
tq	Turn-off time	$T_j = 125^{\circ}C, V_R = 100V, dI/dt = 5A/\mu s,$		-	1200	μs
		dV _{DR} /dt = 20V/µs linear				
Qs	Stored charge	$I_T = 500A, T_j = 125^{\circ}C, dI/dt = 5A/\mu s,$		2000	3000	μC
١L	Latching current	$T_j = 25^{\circ}C, V_D = 5V$		-	3	А
Ι _Η	Holding current	$T_j = 25^{\circ}C, R_{G-K} = \infty, I_{TM} = 500A, I_T = 5A$		-	300	mA

©2 Tors Implant

GATE TRIGGER CHARACTERISTICS AND RATINGS

Symbol	Parameter	Test Conditions	Max.	Units
V _{GT}	Gate trigger voltage	$V_{DRM} = 5V, T_{case} = 25^{\circ}C$	1.5	V
V_{GD}	Gate non-trigger voltage	At 50% V _{DRM} , T _{case} = 125°C	0.4	V
I _{GT}	Gate trigger current	$V_{DRM} = 5V, T_{case} = 25^{\circ}C$	350	mA
I _{GD}	Gate non-trigger current	At 50% V _{DRM} , T _{case} = 125°C	15	mA

CURVES

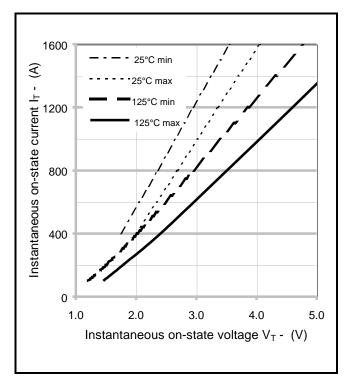


Fig.2 Maximum & minimum on-state characteristics

V_{TM} EQUATION

$$V_{TM} = A + Bln (I_T) + C.I_T + D.\sqrt{I_T}$$

Where A = 1.545561B = -0.202735C = 0.001865D = 0.066158

these values are valid for T_j = 125°C for I_T 50A to 1600A

© ₿YNEX

DCR390J85

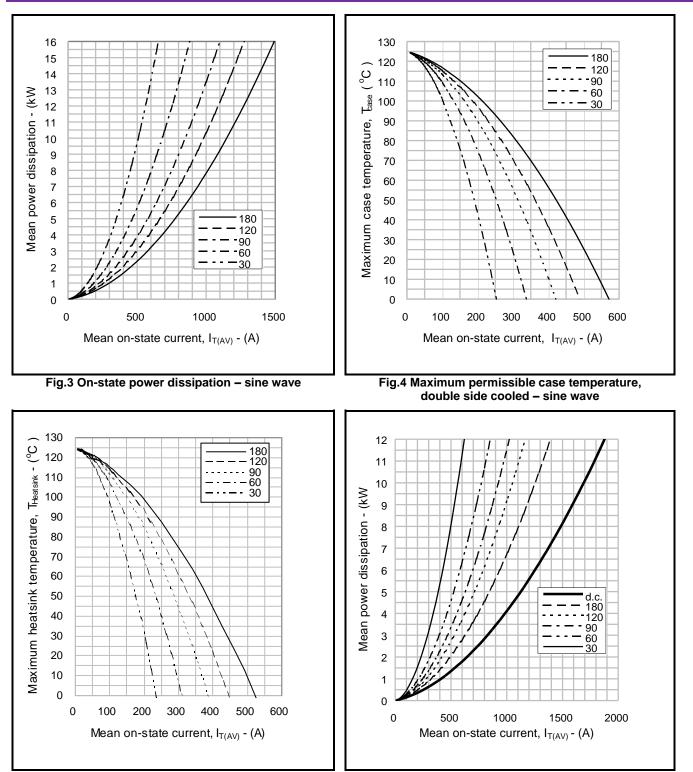


Fig.5 Maximum permissible heatsink temperature, double side cooled – sine wave

Fig.6 On-state power dissipation - rectangular wave

©2

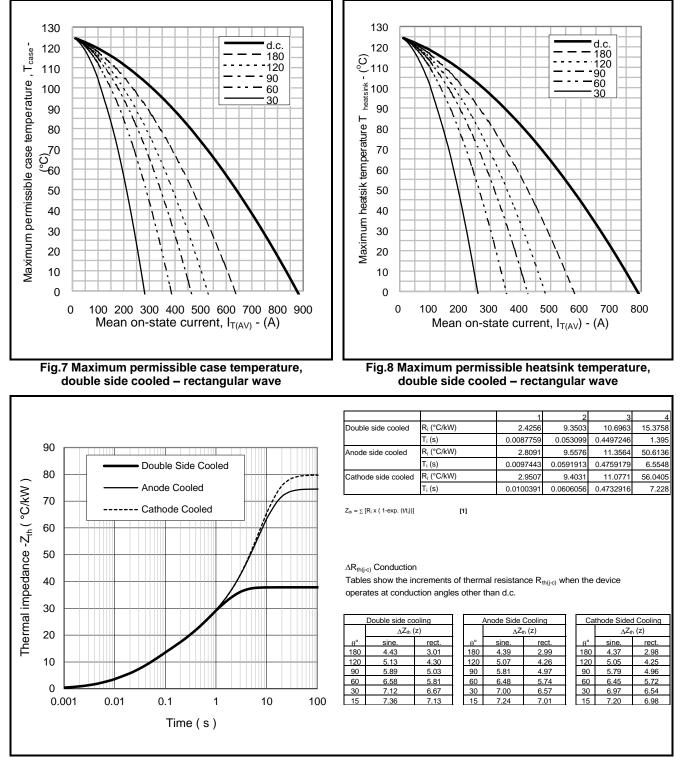


Fig.9 Maximum (limit) transient thermal impedance – junction to case (°C/kW)

© ₽YNCX

Strex Street

DCR390J85

©2

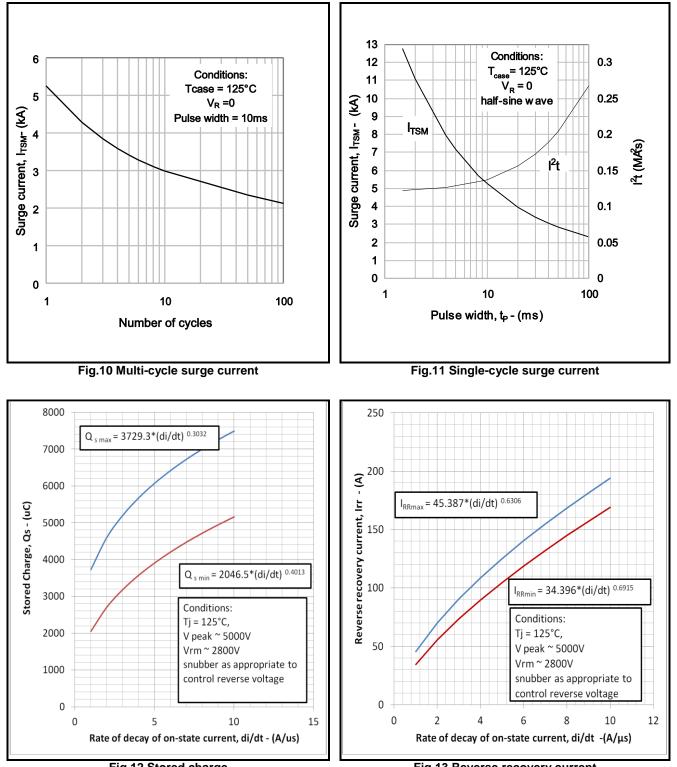
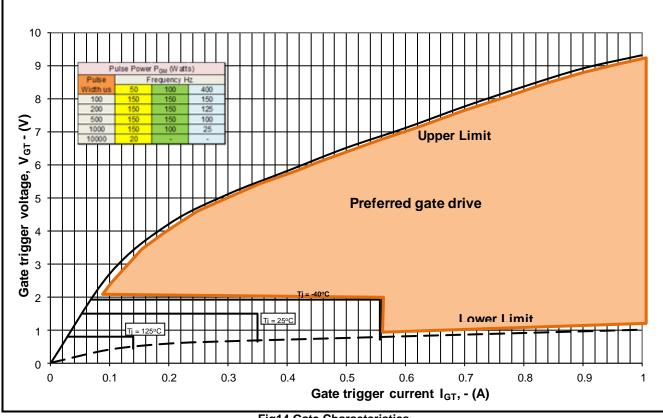



Fig.12 Stored charge

Fig.13 Reverse recovery current

©2

Fig14 Gate Characteristics

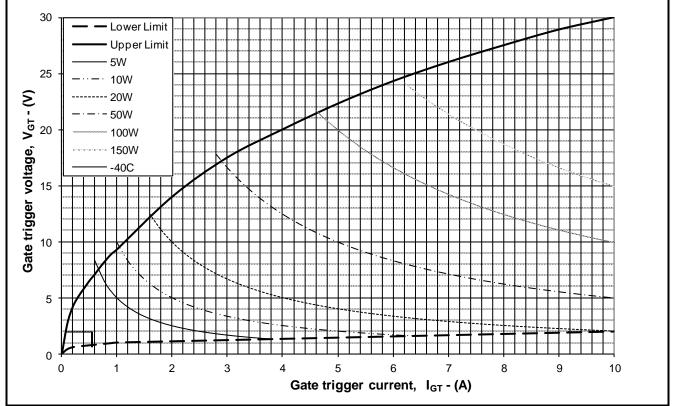


Fig. 15 Gate characteristics

©2 Ion Imptent

PACKAGE DETAILS

For further package information, please contact Customer Services. All dimensions in mm, unless stated otherwise. DO NOT SCALE.

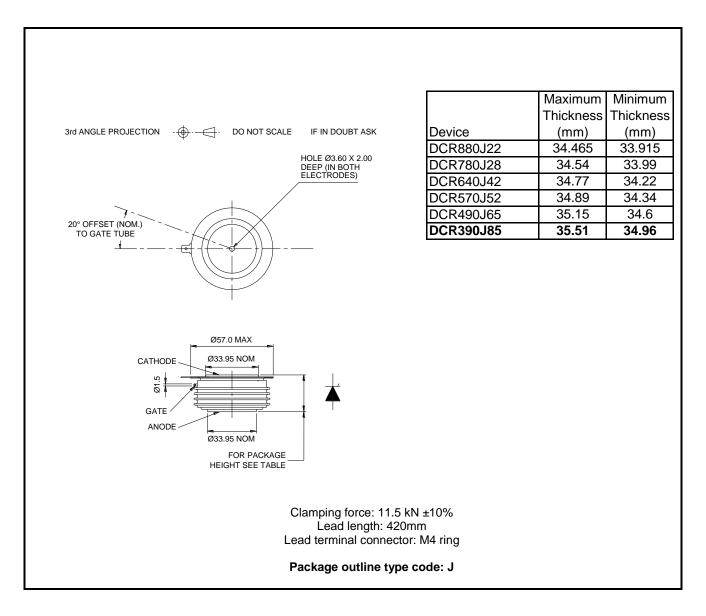


Fig.16 Package outline

IMPORTANT INFORMATION:

This publication is provided for information only and not for resale.

The products and information in this publication are intended for use by appropriately trained technical personnel.

Due to the diversity of product applications, the information contained herein is provided as a general guide only and does not constitute any guarantee of suitability for use in a specific application. The user must evaluate the suitability of the product and the completeness of the product data for the application. The user is responsible for product selection and ensuring all safety and any warning requirements are met. Should additional product information be needed please contact Customer Service.

Although we have endeavoured to carefully compile the information in this publication it may contain inaccuracies or typographical errors. The information is provided without any warranty or guarantee of any kind.

This publication is an uncontrolled document and is subject to change without notice. When referring to it please ensure that it is the most up to date version and has not been superseded.

The products are not intended for use in applications where a failure or malfunction may cause loss of life, injury or damage to property. The user must ensure that appropriate safety precautions are taken to prevent or mitigate the consequences of a product failure or malfunction.

The products must not be touched when operating because there is a danger of electrocution or severe burning. Always use protective safety equipment such as appropriate shields for the product and wear safety glasses. Even when disconnected any electric charge remaining in the product must be discharged and allowed to cool before safe handling using protective gloves.

Extended exposure to conditions outside the product ratings may affect reliability leading to premature product failure. Use outside the product ratings is likely to cause permanent damage to the product. In extreme conditions, as with all semiconductors, this may include potentially hazardous rupture, a large current to flow or high voltage arcing, resulting in fire or explosion. Appropriate application design and safety precautions should always be followed to protect persons and property.

Product Status & Product Ordering:

We annotate datasheets in the top right hand corner of the front page, to indicate product status if it is not yet fully approved for production. The annotations are as follows:-

Target Information:This is the most tentative form of information and represents a very preliminary specification.
No actual design work on the product has been started.Preliminary Information:The product design is complete and final characterisation for volume production is in
progress. The datasheet represents the product as it is now understood but details may change.
The product has been approved for production and unless otherwise notified by Dynex any
product ordered will be supplied to the current version of the data sheet prevailing at the
time of our order acknowledgement.

All products and materials are sold and services provided subject to Dynex's conditions of sale, which are available on request.

Any brand names and product names used in this publication are trademarks, registered trademarks or trade names of their respective owners.

HEADQUARTERS OPERATIONS

DYNEX SEMICONDUCTOR LIMITED Doddington Road, Lincoln, Lincolnshire, LN6 3LF United Kingdom. Phone: +44 (0) 1522 500500 Fax: +44 (0) 1522 500550 Web: http://www.dynexsemi.com

CUSTOMER SERVICE

Phone: +44 (0) 1522 502753 / 502901 Fax: +44 (0) 1522 500020 e-mail: power_solutions@dynexsemi.com

© Dynex Semiconductor Ltd.

Technical Documentation – Not for resale.